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Abstract

Background: Accurate, cheap, and easy to promote methods for dementia prediction and early diagnosis are
urgently needed in low- and middle-income countries. Integrating various cognitive tests using machine learning
provides promising solutions. However, most effective machine learning models are black-box models that are
hard to understand for doctors and could hide potential biases and risks.

Objective: To apply cognitive-test-based machine learning models in practical dementia prediction and
diagnosis by ensuring both interpretability and accuracy.

Methods: We design a framework adopting Rule-based Representation Learner (RRL) to build interpretable
diagnostic rules based on the cognitive tests selected by doctors. According to the visualization and test
results, doctors can easily select the final rules after analysis and trade-off. Our framework is verified on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (n=606) and Peking Union Medical College
Hospital (PUMCH) dataset (n=375).

Results: The predictive or diagnostic rules learned by RRL offer a better trade-off between accuracy and model
interpretability than other representative machine learning models. For mild cognitive impairment (MCI)
conversion prediction, the cognitive-test-based rules achieve an average area under the curve (AUC) of 0.904
on ADNI. For dementia diagnosis on subjects with a normal Mini-Mental State Exam (MMSE) score, the
learned rules achieve an AUC of 0.863 on PUMCH. The visualization analyses also verify the good
interpretability of the learned rules.

Conclusion: With the help of doctors and RRL, we can obtain predictive and diagnostic rules for dementia
with high accuracy and good interpretability even if only cognitive tests are used.

Keywords: Machine Learning; Interpretability; Dementia; Neuropsychological Tests; Deep Learning

*Correspondence: gj107@163.com; jianyong@tsinghua.edu.cn

1Department of Computer Science and Technology, Tsinghua University,

Beijing, P.R. China

2Department of Neurology, State Key Laboratory of Complex Severe and

Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of

Medical Science/Peking Union Medical College, Beijing, P.R. China

Full list of author information is available at the end of the article

†Data used in preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). As such, the investigators within the ADNI contributed

to the design and implementation of ADNI and/or provided data but did

not participate in analysis or writing of this report. A complete listing of

ADNI investigators can be found at:http://adni.loni.usc.edu/

wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

INTRODUCTION
Nowadays, dementia is one of the major causes of dis-
ability and dependency among older people. Around
50 million people have dementia worldwide, and nearly
10 million new cases are reported every year [1]. It
is estimated that nearly 60% of people with dementia
are living in low- and middle-income countries (LMIC)
[2, 3]. The diagnostic coverage in LMIC, although few
available estimates, is much lower than high-income
countries (HIC) and unlikely to exceed 5-10% in most
settings [4–6]. Low diagnostic coverage, especially low
early diagnosis coverage, causes barely any early in-
tervention for people with mild cognitive impairment
(MCI) or dementia in LMIC. Most patients are diag-
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nosed after having severe symptoms, i.e., in the later
stage of dementia, when the best time for the inter-
ventions has already passed [7,8]. As a result, patients
suffer from more harm, risk and cost, carers of peo-
ple with dementia experience high strain, and society
faces a heavy economic burden [1]. Hence, it is a pri-
ority for most LMIC to increase the coverage of timely
dementia diagnoses [3].
Promoting cognitive tests is an effective way to in-

crease the diagnostic coverage in LMIC. As widely
used and verified diagnostic methods for dementia,
cognitive tests take advantage of being cheap, non-
invasive, time-saving, and easy to promote [9–11]. Take
Mini-Mental State Exam (MMSE) [12] as an example.
It is a 30-point questionnaire including tests of orienta-
tion, attention, memory, language, and visual-spatial
skills. During the MMSE, only simple questions are
asked, and no additional equipment or specialist is re-
quired.
However, cognitive tests also have their own draw-

backs. First, compared with other dementia diagnosis
or prediction methods, the sensitivity of one single test
could be poor for the early diagnosis [13–15]. Second,
the effect of one single test is limited since different
cognitive tests may focus on different functions. For ex-
ample, compared with MMSE, the Functional Assess-
ment Questionnaire (FAQ) [16] pays more attention to
daily living functions. Third, the combination of dif-
ferent cognitive tests is difficult since: (i) The number
of combinations increases exponentially along with the
number of candidate cognitive tests, which will lead to
a combinatorial explosion. (ii) The scores of different
cognitive tests cannot be directly added. (iii) The cut-
off value and threshold are hard to determine for the
combined tests.
Other methods, e.g., MRI image, PET image, and

genotyping data, are also inappropriate for LMIC since
their data acquisition is expensive, time-consuming,
and requires well-trained doctors or specialist equip-
ment [17–19]. Even with a large amount of investment,
these methods may still struggle to meet the increasing
demand for dementia diagnosis.
Therefore, we urgently need to find a new effective

method for dementia prediction and early diagnosis
that can be easily promoted in both LMIC and HIC.
Machine learning, especially deep learning, has

achieved impressive results in many medical tasks
[20, 21]. It is promising to integrate various cognitive
tests using machine learning models to achieve higher
accuracy while keeping the advantages of cognitive
tests. However, most of the effective machine learning
models, e.g., deep learning and ensemble models, are
black-box models [22–24]. Since we can hardly under-
stand their decision mechanism, potential biases and

risks could hide in these models, which is unacceptable
for the clinical diagnosis. Additionally, these black-box
models make the diagnosis separated from the doctors,
ignoring the important role of doctors in the diagno-
sis. Another issue is the black-box models need lots of
computation resources when diagnosing [25]. There-
fore, the deployments of black-box models could be
difficult and costly for the hospitals in LMIC.
The usage of interpretable machine learning mod-

els, e.g., decision trees and linear models, however, is
also limited because of their low classification perfor-
mance [23]. These models sacrifice their model capac-
ity to obtain good interpretability. Hence, it is hard
for these interpretable models to deal with complex
problems like dementia prediction and diagnosis. Re-
cent studies try to tackle the drawbacks of conven-
tional interpretable models by interpreting black-box
models using post-hoc methods, e.g., LIME [26,27] and
SHAP [28]. However, the consistency between their in-
terpretations and the original models is not guaran-
teed [23,29]. Therefore, these post-hoc methods could
be misleading in some cases, which is unacceptable for
clinical applications.
In this study, we design a new framework that learns

interpretable rules for the prediction and early diagno-
sis of dementia using a tailored neural network called
Rule-based Representation Learner (RRL) [30]. The
overall framework is shown in Figure 1a. In our frame-
work, the whole process takes full advantage of the
cooperation of the doctor and neural network, and
the doctor and neural network both play an impor-
tant role. Using their medical professional knowledge
and clinical experience, doctors aim to select appro-
priate cognitive tests as the candidate features for the
neural network training and do the trade-off to select
the final predictive or diagnostic rule set among all
the candidate rule sets generated by RRL. RRL aims
to learn from the training data with selected features
and generate candidate diagnostic rule sets with dif-
ferent classification performance and model complexi-
ties. We also propose a new visualization method for
the rules learned by RRL to make this process more
intuitive and easier for doctors. Experiments on two
datasets verify that we can obtain highly accurate and
interpretable predictive (diagnostic) rules for demen-
tia even if only the results of several cognitive tests are
used in our framework.

MATERIALS AND METHODS
Data origin and acquisition
Two datasets are used in this study. The first dataset is
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [31] database (adni.loni.usc.edu), in-
cluding ADNI 1, 2/GO, and 3. The ADNI is a longi-
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Table 1 Demographic characteristics of the ADNI and PUMCH datasets.

ADNI PUMCH

MCI-NC
n=253

MCI-C
n=353

P value
Non-dementia

n=241
Dementia
n=134

P value

Age (years) 70.83 (7.26) 73.89 (7.11) <0.001 63.90 (11.70) 68.41 (10.44) <0.001

Gender (female) 102 (40.32%) 140 (39.66%) 0.937 142 (58.92%) 72 (53.73%) 0.388

Education (years) 16.11 (2.78) 15.91 (2.75) 0.384 12.47 (3.90) 11.96 (3.92) 0.237

MMSE 28.24 (1.61) 27.07 (1.76) <0.001 28.16 (1.25) 27.15 (1.17) <0.001

MoCA 24.35 (2.76) 21.73 (2.79) <0.001 25.36 (2.75) 22.54 (2.82) <0.001

Data are shown as mean (s.d.) or n (%). Abbreviations: MCI = mild cognitive impairment; MCI-C = MCI converter;
MCI-NC = MCI non-converter; MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment.

tudinal multicenter study designed to develop clini-
cal, imaging, genetic, and biochemical biomarkers for
the early detection and tracking of Alzheimer’s disease
(AD). For the ADNI dataset, we mainly aim at identi-
fying patients with mild cognitive impairment (MCI)
who progress to AD, i.e., MCI converter (MCI-C), and
patients with MCI who do not progress to AD, i.e.,
MCI non-converter (MCI-NC). Subjects are included
consecutively. After data preprocessing and removing
invalid records, there are 606 participants left, with 253
(41.7%) MCI-NC and 353 (58.3%) MCI-C. We ensure
that all MCI-NC patients did not convert to AD after
at least 48 months of follow-up. Each patient has 51
features, including the demographic information, the
results of selected cognitive tests (e.g., MMSE score),
and other biomarkers (e.g., APOE4, AV45, and pTau).
The second dataset was collected by the Peking

Union Medical College Hospital (PUMCH) from May
2009 to April 2021 [32]. Only subjects with a nor-
mal MMSE score (≥ 26) and the ability to complete
all neuropsychological tests are included consecutively.
The clinical history, neuropsychological tests, labora-
tory tests, and head CT or MRI are leveraged to make
diagnoses. A total of 375 subjects are included, among
which 241 (64.3%) subjects are diagnosed with cog-
nitively normal (CN) or MCI, i.e., non-dementia, and
134 (35.7%) are diagnosed with dementia. After data
preprocessing, the demographic information and the
results of selected cognitive tests in each record are
converted into 64 features.
The demographic characteristics of the ADNI and

PUMCH datasets are shown in Table 1. See Table 3
and 4 in the Appendix for all the available features in
ADNI and PUMCH.

Overall framework to build interpretable rules
The overall framework to learn interpretable diag-

nostic rules using neural networks is shown in Figure
1a. First, after data preprocessing, doctors need to do
the feature selection to ensure all the features used

for the following rule construction are easily available
and their corresponding cognitive tests are not time-
consuming. After the feature selection, a novel neu-
ral network, called Rule-based Representation Learner
(RRL) [30], is adopted to learn rules from the data.
RRL can be trained like ordinary neural networks but
with a different training method. After training, we
can easily convert RRL into an equivalent rule set due
to its tailored model structure and components. By
adjusting the network structure and hyperparameters
of RRL, rule sets with different model complexities
and classification performances are generated. Testing
these rule sets on the test set, we can obtain the rela-
tionship between model complexity and classification
performance. Combined with the visualization of rule
sets, doctors can select the rule set with the best trade-
off as the final rule set. If all the generated rule sets do
not satisfy the requirement, doctors can reselect the
features according to the existing results and analyses
and then retrain the RRL.

Feature selection
The feature selection step in our framework is that
doctors select features according to their costs, time
consumption, equipment requirement, doctor training
cost to satisfy the need for different scenarios. For
example, a hospital in LMIC can hardly obtain and
leverage the features like AV45 or PDG due to its lim-
ited resources. Therefore, these hard-to-obtain features
should be removed to match the situation of the hospi-
tal. It should be noted that feature selection by doctors
is different from feature selection by machine learning
models since machine learning models mainly select
features according to their effects on the classification
performance.
We divide all features into four types, i.e., de-

mographics, easy-to-obtain cognitive tests, hard-to-
obtain cognitive tests, and other biomarkers. ADNI-E
consists of demographics and only easy-to-obtain cog-
nitive tests, while ADNI-H consists of demographics
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Figure 1 The overall framework and RRL examples. a, The overall framework to build interpretable diagnostic rules with RRL and
the help of doctors. b, A Rule-based Representation Learner example. In RRL, one logical layer consists of one conjunction layer and
one disjunction layer. One node in the conjunction layer corresponding to one conjunction operation, i.e., ∧, while one node in the
disjunction layer corresponds to one disjunction operation, i.e., ∨. c, One MCI-C predictive rule set learned by RRL. The second and
third columns list the scores of rules for the corresponding classes. The last column lists the rules. d, Visualization of the rule set
shown in c. The vertical red lines indicate feature values of one example subject. The pie chart shows the prediction result, i.e., the
probability of each class. Abbreviations: MCI = Mild Cognitive Impairment; MCI-C = MCI converter; MCI-NC = MCI nonconverter;
RRL = Rule-based Representation Learner; FAQ = Functional Assessment Questionnaire; RAVLT.immediate = RAVLT Immediate
(sum of 5 trials); EcogSPMem = SP ECog - Mem; ADAS13 = Alzheimer’s Disease Assessment Scale 13; RAVLT.perc.forgetting =
RAVLT Percent Forgetting; TRABSCOR = Trails B.

and all the cognitive tests. ADNI-A consists of all the
available features in the ADNI dataset. All the fea-
tures in the PUMCH dataset are from demographics
or easy-to-obtain cognitive tests. See Table 3 and 4 in
the Appendix for the details of feature selection.

Rule-based representation learner

Rule-based Representation Learner (RRL) [30] is a
neural network that automatically learns interpretable
non-fuzzy rules for data representation and classi-
fication. RRL is designed for scenarios demanding
both good classification performance and model in-
terpretability, and we can easily adjust it to obtain a
trade-off between classification performance and model
complexity for different requirements. Figure 1b illus-
trates the structure of an example RRL.

RRL consists of three different types of layers, i.e.,
binarization layer, logical layer, and linear layer. Layer
in RRL contains a specific number of nodes, and there
are trainable edges connecting these nodes with nodes
in the previous layer. The binarization layer binarizes
each continuous feature into several binary features.
Each node in the binarization layer corresponds to
a cut-off value of a continuous feature. For the j-th
continuous feature cj , the binarization layer randomly
generates k lower bound values (Tj,1, . . . , Tj,k) and k
upper bound values (Hj,1, . . . ,Hj,k), then it will check
if cj satisfies the bounds and get the following binary
vector as output:

Qj = [1cj>Tj,1 , . . . ,1cj>Tj,k
,1cj≤Hj,1 , . . . ,1cj≤Hj,k

]

(1)



Wang et al. Page 5 of 16

Where 1(·) is an indicator function. The logical layers
automatically learn data representations using logical
rules. To build rules in more complex forms, we can
stack several logical layers together. One logical layer
consists of one conjunction layer and one disjunction
layer. One node in the conjunction layer corresponds
to one conjunction operation, while one node in the
disjunction layer corresponds to one disjunction oper-
ation. The edges indicate which variables are involved

in the operation. Specifically, let r
(l)
i denote the i-th

conjunction node in the l-th logical layer and s
(l)
i de-

note the i-th disjunction node, then the two types of
nodes are defined as follows:

r
(l)
i =

!

W
(l,0)
i,j =1

u
(l−1)
j , s

(l)
i =

"

W
(l,1)
i,j =1

u
(l−1)
j , (2)

where W
(l,0)
i,j and W

(l,1)
i,j are the adjacency matrices

and u(l−1) is the output of the previous layer. The
binarization layer and all the logical layers actually
form a rule learner (representation learner). One logi-
cal rule, i.e., one node in the last logical layer, is formu-
lated by the original features. The linear layer can be
considered as a linear classifier based on the learned
rules. In other words, the inputs of the linear classi-
fier are the values of learned rules (0 for False and 1
for True). These logical rules are easy to analyze and
understand, benefiting from their no-fuzzy form.

To effectively learn the discrete rules in an end-to-
end way, RRL adopts logical activation functions and
a novel gradient-based discrete model training method
called Gradient Grafting. The logical activation func-
tions use multiplications of real-value variables to sim-
ulate the logical operations. With logical activation
functions, we can obtain a continuous version of RRL,
which is differentiable. Using Gradient Grafting, we
can build a complete backward path from the loss func-
tion to the parameters of the discrete RRL by combin-
ing the gradients from both discrete and continuous
RRL. Hence, the whole RRL is differentiable, and we
can optimize discrete RRL with gradient descent. For
more details, please refer to [30].

Model interpretation

As we mentioned before, RRL can be considered as a
rule learner and a linear classifier. Therefore, we can
interpret and understand RRL in two steps. First, the
weights of the linear classifier tell us how each rule con-
tributes to the final decision on each class. For each
rule, we call its corresponding weights its scores. In
addition, by sorting the scores, we can get important
rules that we should pay more attention to. Second, in

RRL, each rule is formulated by several original fea-
tures. We can easily understand one rule by analyzing
the original features and logical operators in it.
For example, one example predictive rule set learned

by RRL is shown in Figure 1c. The second and third
columns list the scores of the rules. The last column
lists the rules. All rules are sorted by the maximum
absolute value of their corresponding scores. When di-
agnosing with these rules, we find all the rules with
True value (satisfied) and sum up their scores in each
score column to get the score for each class. Let de-
note the score of the i-th class by zi. The predicted
probability of the i-th class is:

softmax(z)i =
ezi

#C
j=1 e

zj

, (3)

where C is the number of classes. For one class, a
high score indicates a high probability. Take the rule
“ADAS13 > 14.5 ∧ EcogSPMem > 1.7” as an exam-
ple. Since the scores of class MCI-NC and MCI-C are
-1.0 and 0.9, respectively, when the value of this rule
is True, the score of being MCI-C will increase while
the score of being MCI-NC will decrease. Further-
more, this rule contains the conjunction of ADAS13
and EcogSPMem, which tells us that the combination
of these two features could be useful for the diagnosis.
The model complexity of RRL has a negative ef-

fect on the model interpretability. To limit the model
complexity and obtain a trade-off between classifica-
tion performance and model interpretability, we can
reduce the number of logical layers in RRL and reduce
the number of nodes in each logical layer. Moreover,
to search for an RRL with shorter rules during the
training, we can increase the coefficient of the L1/L2
regularization term [33] in the loss function. The dead
nodes detection, redundant rules elimination [34], and
skip connections are also helpful for a simpler RRL.

Rule visualization
Although the rule set learned by RRL is much more
interpretable than ordinary neural networks, under-
standing rules and their real value scores may take too
much time for doctors. Additionally, the cut-off values
of one feature appearing in different rules also make it
harder to understand. Inspired by the nomogram [35],
we visualize the rule set learned by RRL in a novel
form to make it more intuitive and convenient to use.
Figure 1d is the visualization of the rule set shown in
Figure 1c.
It takes three steps to generate the visualization re-

sults. First, we merge rules of length one that have the
same feature (sum up the scores of all satisfied rules
according to the feature value). Then, for each feature,
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we draw the scores of all the classes (e.g., MCI-NC and
MCI-C) in the feature value range. Scores between dif-
ferent cut-off values are different. For example, in Fig-
ure 1c, the rule “FAQ < 0.5” and “FAQ > 2.5” can be
merged and visualized together, i.e., the first subfigure
in Figure 1d. In this subfigure, we can directly see how
the value of the cognitive test FAQ affects the score. If
FAQ < 0.5, i.e., Rule #1 in Figure 1c is satisfied, then
the total score of being MCI-NC increased by 1.2, and
the total score of being MCI-C decreased by 1.2. If 0.5
≤ FAQ ≤ 2.5, i.e., no rule is satisfied, then the total
score will not change. Similarly, if FAQ > 2.5, we add
the scores of Rule #5.
Second, for all the rules whose length is greater than

one, we consider each of them a new feature and draw
the scores corresponding to the True and False states.
For instance, the third subfigure in Figure 1d is the
visualization of Rule #3. When the value of Rule #3
is True, we will add the total score of being MCI-NC
and MCI-C by -1.0 and 0.9, respectively. Otherwise,
add the total scores by zero.
Finally, we draw the biases of the linear layer, e.g.,

the penultimate subfigure in Figure 1d. When diagnos-
ing one subject, we also draw red vertical lines to rep-
resent the feature values of this subject. The ordinates
of the intersection points of the red line and other hori-
zontal lines are the scores. The pie chart shows the final
result. For the example subject in Figure 1d, the to-
tal score of being MCI-C is 0+0.9+0.9+0-1.2=0.6, and
the total score of being MCI-NC is 0-1.0-1.0+0+1.2=-
0.8. According to Softmax, the probabilities of MCI-C
and MCI-NC are 80.2% and 19.8%, respectively.
With visualization, doctors can intuitively under-

stand how the scores change with the value of one
feature and how the combination of features affects
the diagnosis.

Evaluation
We adopt the receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUC) to
evaluate the classification performance. We use the
total number of edges as the metric of model com-
plexity for rule-based models. Compared to the total
length of all rules, the total number of edges takes the
reused structures in rule-based models into considera-
tion. Hence, it can evaluate the model complexity more
accurately. 10-fold cross-validation is adopted to split
the datasets and reduce the biases of the evaluations.
We split the dataset according to the roster ID. There-
fore, no patient is included in both the training and
test sets, and the risk of data leakage is avoided [36].
We implement RRL with Python and PyTorch [37].
All experiments are conducted on a Linux server with
an Intel Xeon E5 v4 CPU at 2.10GHz and one GeForce
RTX 2080 Ti GPU.

Comparison with other models
The performance of RRL is compared with six rep-
resentative machine learning models, including in-
terpretable models and complex models (black-box
models) that are hard to interpret and understand.
CART [38] is a rule-based model that builds a decision
tree. Logistic Regression (LR) [39] is a linear model.
These two models and linear Support Vector Machines
(SVM) [40] are considered interpretable models. Piece-
wise Linear Neural Network (PLNN) [41], nonlinear
SVM (using RBF or Poly kernels), Random Forest
(RF) [42] and eXtreme Gradient Boosting (XGBoost)
[43] are considered complex models. For SVM, the reg-
ularization parameter C is in {2−4, 2−2, 1, 22, 24, 26},
and the tolerance for stopping criteria is set to 0.001.
PLNN is a Multilayer Perceptron (MLP) that adopts
piecewise linear activation functions, e.g., ReLU [44].
RF and XGBoost are ensemble models consisting of
hundreds of decisions trees. Nonlinear SVM, PLNN,
RF, and XGBoost are hard to interpret due to their
complex inner structures.

RESULTS
Performance of MCI-C prediction
To show the effectiveness of RRL on the MCI-C predic-
tion task, we train RRL on the ADNI dataset and com-
pare it with three interpretable models (i.e., CART,
LR, and linear SVM) and four black-box models (i.e.,
nonlinear SVM, PLNN, RF, and XGBoost). The 10-
fold cross validated AUCs of the MCI-C prediction of
these models trained on the ADNI dataset are shown
in Table 2. ADNI-E, ADNI-H, and ADNI-A represent
different feature selections, as we described before.
First, we can observe that RRL outperforms all the

baseline models, including the black-box models, re-
gardless of the feature selection we chose. Second, the
average AUC of RRL trained on ADNI-E is 0.904,
which means with only demographics and easily avail-
able cognitive tests, we can obtain an accurate rule set
for the MCI-C prediction task. We can also see that,
for the AUCs of highly accurate models, e.g., RRL
and RF, the differences between ADNI-E and ADNI-
H are quite small. It indicates that, for the MCI-C
prediction task, the easily available cognitive tests al-
ready have the same useful information as those cog-
nitive tests that are hard to obtain. However, com-
pared with ADNI-H, the hidden useful information in
ADNI-E could be more difficult to find and may cause
the trained model to be much more complex. Third,
the average AUC of RRL trained on ADNI-A is 0.933,
which is better than the results on ADNI-E and ADNI-
H. This observation indicates there is still some useful
information for MCI-C prediction that cognitive tests
cannot capture. Only depending on other biomarkers,
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Table 2 10-fold cross validated AUC of RRL and other baseline models on the ADNI and PUMCH data sets.

RRL(Ours) CART LR SVM(Linear) SVM(RBF) SVM(Poly) PLNN RF XGBoost

ADNI-E 0.904±0.05 0.836±0.07 0.884±0.06 0.887±0.05 0.881±0.06 0.873±0.05 0.888±0.06 0.898±0.05 0.886±0.06

ADNI-H 0.904±0.04 0.835±0.06 0.894±0.04 0.894±0.03 0.896±0.04 0.890±0.04 0.902±0.04 0.902±0.04 0.903±0.05

ADNI-A 0.933±0.03 0.855±0.05 0.911±0.03 0.912±0.03 0.921±0.04 0.912±0.03 0.929±0.03 0.927±0.03 0.920±0.03

PUMCH 0.863±0.08 0.752±0.09 0.834±0.04 0.841±0.03 0.850±0.05 0.850±0.06 0.841±0.05 0.861±0.08 0.836±0.07

Data are shown as mean ± std. RRL = Rule-based Representation Learner; CART = Classification and Regression Trees; LR = Logistic
Regression; SVM = Support Vector Machine; RBF = Radial Basis Function; PLNN = Piecewise Linear Neural Network; RF = Random Forest;
XGBoost = eXtreme Gradient Boosting (gradient boosted decision tree).

Figure 2 Scatter plots of AUC against model complexity for RRL and baseline models on ADNI-E, ADNI-H, ADNI-A, and PUMCH.
AUC is used to evaluate the classification performance while log(#edges) is used to evaluate the model complexity. Higher AUC and
lower model complexity are better. Each point is the average result of 10-fold cross-validation of one model with a specific
hyperparameter setting. Abbreviations: ADNI = Alzheimer’s Disease Neuroimaging Initiative; AUC = Area Under the Curve;
PUMCH = Peking Union Medical College Hospital; RF = Random Forest; RRL = Rule-based Representation Learner; XGBoost =
eXtreme Gradient Boosting.

e.g., data from MRI and PET, can we leverage more
useful information and further improve the results.

Model complexity of MCI-C predictive rules
One crucial factor affecting interpretability is model
complexity. Even models that are commonly consid-
ered as interpretable, e.g., decision trees, could become
hard to understand if their model complexities are
high. For example, we can hardly understand a deci-
sion tree with more than one hundred layers. Moreover,
low model complexity without acceptable accuracy is
meaningless. Therefore, interpretable models seek to
keep low model complexity while ensuring high accu-

racy, and what we really care about is the relation-
ship between accuracy (prediction performance) and
model complexity of the models. In Figure 2, we draw
scatter plots of average AUC (on the test set) against
log(#edges) for rule-based models or ensemble meth-
ods trained on ADNI-E, ADNI-H, and ADNI-A. The
logarithm of the number of edges, i.e., log(#edges), is
used to evaluate the model complexity.

We can observe that, compared with other baseline
models, RRL can obtain a better trade-off between
prediction performance and model complexity regard-
less of the feature selection we chose. In other words,
if the AUC of RRL is close to one baseline model, then
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Figure 3 Visualization of the entire predictive rule set for ADNI-E, i.e., RS-E. Only easy-to-obtain cognitive tests are used to build
the rule set. The last and the penultimate subfigures show the ROC curve and the bias, respectively. Abbreviations: FAQ =
Functional Assessment Questionnaire; TRABSCOR = Trail Making Test-B. mPACCtrailsB = ADNI modified Preclinical Alzheimer’s
Cognitive Composite (PACC) with Trails B; RAVLT.immediate = RAVLT Immediate recall (sum of 5 trials); LDELTOTAL = Logical
Memory (Delayed Recall); RAVLT.perc.forgetting = RAVLT Percent Forgetting.

the model complexity of RRL will be lower. If RRL has
a close model complexity with one baseline model, then
the AUC of RRL will be higher. For example, to get
an AUC close to 0.895 in ADNI-E, the log(#edges) of
RRL is 5.6 while the log(#edges) of RF is 9.6, which
indicates that the model complexity of RF is about
fifty times that of RRL (i.e., e9.6−5.6 ≈ 55).

Another observation is that RRL trained on ADNI-
E needs more model complexity than RRL trained
on ADNI-H to get a close AUC. The cognitive tests
in ADNI-H that are hard to obtain can simplify the
learned rules for MCI-C prediction. The main reason is
that one hard cognitive test will collect more informa-
tion than one easily available cognitive test. Therefore,
RRL trained on ADNI-H could use fewer or shorter
rules than RRL trained on ADNI-E to build the model
with comparable performance. We can also see that
with the help of other biomarkers, RRL trained on
ADNI-A has better prediction performance than RRL
trained on ADNI-E or ADNI-H when their model com-
plexities are close.

Visualization of MCI-C predictive rules
After the procedure shown in Figure 1a, we obtain the
final predictive rule sets for ADNI-E, ADNI-H, and
ADNI-A. Figure 3, Figure 4, and Figure 5 show the vi-
sualization of the entire predictive rule set for ADNI-E,
ADNI-H, and ADNI-A, respectively. Let us call these
predictive rule sets RS-E, RS-H, and RS-A, respec-
tively. All these predictive rule sets are selected by the
doctors according to their prediction performance, rule
complexity, costs, time consumption, equipment re-
quirement, doctor training cost, and consistency with
clinical experience. The prediction performance, i.e.,
the ROC curve and AUC, of each rule set on its cor-
responding fold is shown in the last subfigure of the
corresponding figure, and the bias (of the linear layer)
in each rule set is also shown in the penultimate sub-
figure. The remaining subfigures are sorted by their
span of scores.
Since the rule set shown in Figure 3, i.e., RS-

E, is obtained from RRL trained on ADNI-E, it
only uses demographics and easily available cogni-
tive tests for MCI-C prediction. We can see that the
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Figure 4 Visualization of the entire predictive rule set for ADNI-H, i.e., RS-H. Only cognitive tests are used to build the rule set.
The last and the penultimate subfigures show the ROC curve and the bias, respectively. Abbreviations: FAQ = Functional
Assessment Questionnaire; ADAS13 = Alzheimer’s Disease Assessment Scale 13 (including Delayed Word Recall and Number
Cancellation); LDELTOTAL = Logical Memory (Delayed Recall); RAVLT.perc.forgetting = RAVLT Percent Forgetting; EcogSPMem
= Everyday Cognition filled by the patient’s study partner (Memory domain with eight items).

whole rule set is very simple, and only six features
are needed, including FAQ, TRABSCOR, mPAC-
CtrailsB, RAVLT.immediate, RAVLT.perc.forgetting
and LDELTOTAL. These six features are gener-
ated from five cognitive tests (both TRABSCOR and
mPACCtrailsB are from the same cognitive tests)
and evaluate MCI patients from different perspectives.
FAQ evaluates the daily living functions. TRABSCOR
and mPACCtrailsB evaluate executive functions and
attention. RAVLT.immediate, RAVLT.perc.forgetting,
and LDELTOTAL evaluate immediate, delayed, and
episodic memory, respectively. Although RS-E is sim-
ple, it gets a good prediction performance, i.e., the
AUCs on the training set, validation set, and test set
are 0.902, 0.882, and 0.938, respectively. Through the
visualization, doctors can easily understand how the
values of cognitive tests affect the prediction result.
For example, FAQ has two cut-off values, i.e., 0.5 and
2.5, affecting the outcome. When FAQ < 0.5, the score
of being MCI-NC is higher, while when FAQ > 2.5, the
score of being MCI-C is higher. Therefore, doctors only
need to get the values of these six features and com-
pare them with their corresponding cut-off values to
obtain the scores for MCI-C prediction.
Figure 4 shows the rule set for ADNI-H, i.e., RS-

H. Compared with the rule set for ADNI-E, i.e., RS-
E, shown in Figure 3, RS-H uses additional features,
i.e., features from hard-to-obtain cognitive tests, to
build the rules. We can see that RS-H is even simpler
than RS-E, but its prediction performance is good.

The AUCs of RS-H on the training set, validation
set, and test set are 0.882, 0.902, and 0.949, respec-
tively. Similar to RS-E, RS-H still keeps FAQ, LDEL-
TOTAL, and RAVLT.perc.forgetting. The difference is
that RS-H replaces TRABSCOR, mPACCtrailsB, and
RAVLT.immediate with ADAS13 and EcogSPMem.
ADAS13 evaluates the global cognition of the patient
while EcogSPMem evaluates their memory. Another
observation is that RS-H uses a combination of two
original features to build a new feature, i.e., “FAQ >
0.5 ∧ ADAS13 > 14.165”. For this new feature, only
when “FAQ > 0.5” and “ADAS13 > 14.165” are both
satisfied, the score of being MCI-C will be higher. Oth-
erwise, RS-H uses the remaining features to predict.
Figure 5 shows the rule set for ADNI-A, i.e., RS-A.

Since RS-A uses all the available features in ADNI, the
procedure of generating RS-A not only shows how to
select important features automatically but also shows
how to combine cognitive tests with other effective
biomarkers. We can observe that the prediction per-
formance of RS-A is the best among RS-E, RS-H, and
RS-A, and the rule complexity of RS-A is still very
low. The AUCs of RS-A on the training set, validation
set, and test set are 0.923, 0.915, and 0.955, respec-
tively. Similar to RS-E and RS-H, RS-A also uses FAQ,
mPACCtrailsB, RAVLT.immediate, and EcogSPMem.
These four features are generated from cognitive tests.
The difference is that AV45, FDG, and Hippocampus,
these three non-cognitive test features play an impor-
tant role in the MCI-C prediction. AV45 detects the
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Figure 5 Visualization of the entire predictive rule set for ADNI-A, i.e., RS-A. All the available features in the ADNI dataset are used
to build the rule set. The last and the penultimate subfigures show the ROC curve and the bias, respectively. Abbreviations: AV45 =
AV45 ratio (cortical grey matter/whole cerebellum); FAQ = Functional Assessment Questionnaire; FDG = Average FDG-PET of
angular, temporal, and posterior cingulate; mPACCtrailsB = ADNI modified Preclinical Alzheimer’s Cognitive Composite (PACC)
with Trails B; RAVLT.immediate = RAVLT Immediate recall (sum of 5 trials); Hippocampus = UCSF Hippocampus volume (right
and left); EcogSPMem = Everyday Cognition filled by the patient’s study partner (Memory domain with eight items).

brain amyloid-β (Aβ) protein deposition, whose effec-
tiveness of early diagnosis of Alzheimer’s disease has
been verified by other studies [45]. FDG is the aver-
age FDG-PET of angular, temporal, and posterior cin-
gulate. Hippocampus is essential for spatial learning.
FDG and Hippocampus are related to neurodegener-
ation or neuronal injury. Additionally, the cut-off val-
ues of cognitive test features, e.g., mPACCtrailsB, are
slightly adjusted according to other non-cognitive test
features.

Performance of early dementia diagnosis
To verify the effectiveness of RRL on the early de-
mentia diagnosis task, we train RRL on the PUMCH
dataset and compare it with the same baseline models
as we used in the MCI-C prediction task. The 10-fold
cross validated AUCs of the dementia diagnosis of all
models are shown in the last row of Table 2.
Similar to the observation we get from the results

of the MCI-C prediction task on the ADNI dataset,
RRL outperforms all the baseline models on the early

dementia diagnosis task. Since all the subjects in
PUMCH have a normal MMSE score, it is difficult
to diagnose them precisely. Only RRL and RF can
achieve an average AUC of 0.86, significantly outper-
forming all the interpretable baseline models.

Model complexity of diagnostic rules

To show the relationship between model complexity
and diagnosis performance, we draw scatter plots of
average AUC (on the test set) against log(#edges)
for rule-based models or ensemble methods trained on
PUMCH in Figure 2 (the last subfigure). The loga-
rithm of the number of edges, i.e., log(#edges), is used
to evaluate the model complexity.

We can also observe that, on PUMCH, RRL obtain
a better trade-off between diagnosis performance and
model complexity than other baseline models. The re-
sults in Figure 2 show that we can easily adjust the
model complexity of RRL trained on PUMCH by set-
ting the hyperparameters. Therefore, there are more
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Figure 6 Visualization of the rule set for early dementia diagnosis. The entire rule set is learned from PUMCH, i.e., RS-P. All the
features in the PUMCH dataset are from demographics or easy-to-obtain cognitive tests. The last and the penultimate subfigures
show the ROC curve and the bias, respectively. Abbreviations: AVLT-H = the first learning trial of Auditory Verbal Learning
Test–Huashan version; AVLT N5 = the fifth long delayed free recall trial of AVLT-H; CDT = Clock drawing test; CVF = Category
verbal fluency; Modified-Rey recall = Modified Rey-Osterreith figure with a 10-minute free recall; TMT A = Trail making test A;
AVLT N6 = the sixth delayed category cue recall trial of AVLT-H; LMT-T = the total score of the first story of logical memory test
of modified Wechsler Memory Scale; PAL-N3 = the third learning trial of Paired-associate learning of the Clinical Memory Test.

choices for the doctors, and it is more likely to find
suitable diagnosis rules.

Visualization of dementia diagnostic rules
In Figure 6, we show the visualization of the final de-
mentia diagnostic rule set for PUMCH, and we call this
rule set RS-P. RS-P is generated from RRL trained on
the PUMCH dataset and selected by doctors accord-
ing to its prediction performance, rule complexity, time
consumption, equipment requirement, doctor training
cost, and consistency with clinical experience.

As we mentioned before, since all the subjects in
PUMCH have a normal MMSE score, it is difficult to
diagnose them precisely. Therefore, to achieve an ac-
ceptable diagnosis performance, RS-P has to use eight
features to build the rule set. These eight features eval-
uate patients from different perspectives. AVLT N5
and AVLT N6 evaluate the delayed memory. CDT eval-
uates visuospatial and executive functions. CVF evalu-
ates the executive function and motor speed. Modified-
Rey recall evaluates the visuospatial function and non-
verbal memory. TMT A evaluates attention and ex-
ecutive function. LMT-T evaluates episodic memory.
PAL-N3 evaluates verbal memory and executive func-
tion. As the last subfigure of Figure 6 shows, the AUCs
of RS-P (on its corresponding fold) on the training set,

validation set, and test set are 0.882, 0.883, and 0.872,
respectively.

DISCUSSION
Our study demonstrates that, by combining doctors
and tailored neural networks, i.e., RRL, we can ob-
tain accurate and interpretable rules for the predic-
tion and early diagnosis of dementia based on cogni-
tive tests. For the MCI-C prediction task, our study
suggests that even if only easily available cognitive
tests are used, the predictive rules learned by RRL can
get a good prediction performance. With the help of
hard-to-obtain cognitive tests and other biomarkers,
rules learned by RRL can further improve their in-
terpretability and prediction performance. For the de-
mentia diagnosis task, our study suggests that the in-
tegration of cognitive tests is able to diagnose subjects
with normal MMSE scores (≥ 26) with acceptable per-
formance. This also suggests that one single cognitive
test is insufficient for the early dementia diagnosis, and
integrating several cognitive tests could be a promis-
ing direction. In addition, our study demonstrates that
RRL can achieve a better trade-off between accuracy
and model interpretability than other rule-based mod-
els in the prediction or diagnosis of dementia.
Cognitive tests are widely used for the screening and

diagnosis of dementia [10,46]. They take advantage of
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being cheap, non-invasive, and easy to promote. How-
ever, since dementia is a heterogeneous disease [47,48]
and different cognitive tests focus on different func-
tions [10, 49], the effect of one single test is limited.
Studies have found that the sensitivity of one single
cognitive test could be poor for the early diagnosis of
dementia [13–15].
To overcome the shortcomings of single cognitive

tests, one possible solution is finding other effec-
tive biomarkers, e.g., AV45 and FDG [50, 51]. How-
ever, these biomarkers are commonly expensive, time-
consuming, and require well-trained doctors or special-
ist equipment. Furthermore, recent studies find that
cognitive tests can capture useful information that
other biomarkers can not capture, and combining cog-
nitive tests and other biomarkers could significantly
improve the results [52]. In our study, we have sim-
ilar findings on the predictive rule sets for ADNI-A.
Therefore, the role of the cognitive tests remains irre-
placeable.
Another solution is integrating existing cognitive

tests and biomarkers using machine learning mod-
els to improve performance [52–54]. However, conven-
tional interpretable models, e.g., decision trees and lin-
ear models, can hardly deal with complex tasks like
the prediction or diagnosis of dementia due to their
limited model capacity. Hence, deep learning models
and ensemble models are widely used in dementia re-
lated tasks. However, these models are commonly con-
sidered black-box models, and we can hardly under-
stand their decision mechanism. Therefore, potential
biases or errors could hide in these black-box mod-
els, and the cooperation of models and doctors is also
hard to carry out. Even if we can try to interpret the
black-box models using post-hoc methods, e.g., LIME
and SHAP [26–28], the consistency between the inter-
pretation and the original model is not guaranteed.
The complexities and performance of baseline models
shown in our study also verify the drawbacks of con-
ventional interpretable models and black-box models.
Compared with other machine learning models, RRL

not only has good classification performance but also
obtains a better trade-off between performance and
interpretability in our study. This suggests that RRL
could be the best choice for doctors in most cases.
Furthermore, after the visualization of trained RRL,
the simulatability of RRL is good (similar to decision
trees). To get the same result with RRL, doctors only
need to compare the features with their correspond-
ing cut-off values and calculate the score of each class.
Therefore, no operation training is needed for doctors
using RRL, and it is easy to deploy RRL.
Different from other studies [52,55,56], we also con-

sider promoting the predictive and diagnostic rules

learned by our model, especially in LMIC. In the fea-
ture selection step, doctors are asked to select features
according to their costs, time consumption, equipment
requirement, and doctor training cost to suit differ-
ent scenarios. For example, the predictive rule set for
ADNI-E, i.e., RS-E, only uses demographics and fea-
tures from easily available cognitive tests. These easily
available cognitive tests cost less time and need less
training for the doctors. Therefore, hospitals lacking
doctors and equipment, e.g., hospitals in LMIC, can
still use RS-E for MCI-C prediction. In contrast, the
predictive rule set for ADNI-A, i.e., RS-A, uses fea-
tures from hard-to-obtain cognitive tests and biomark-
ers. These hard-to-obtain cognitive tests could cost a
long time and need well-trained doctors. The hard-to-
obtain biomarkers also need well-trained doctors and
expensive equipment. Hence, RS-A is more suitable for
hospitals with sufficient resources, e.g., a tertiary hos-
pital, to further improve the performance of MCI-C
prediction.
The framework we proposed is also promising for

other medical tasks that can be handled with super-
vised learning, e.g., the diagnosis of depression [57,58].
Using our framework in these tasks is not only able to
obtain diagnostic rule sets with high performance and
good interpretability but also helpful for doctors to
discover new knowledge hidden in the data.
Our study has the following limitations. First, un-

like Long Short-Term Memory (LSTM) [59], RRL can
not directly deal with longitudinal time sequence data,
especially variable-length sequence data. Therefore, in
our study, our model only uses the state of subjects
at a certain stage, which may lose some useful infor-
mation hidden in the longitudinal time sequence data.
Second, some of the features used in our study are
coarse-grained. Their corresponding fine-grained fea-
tures could be used to further improve the learned
rules, e.g., saving time in testing. For example, we can
consider the score of each sub-item of MMSE as one
feature, rather than only the total score of MMSE as
one feature. Third, to keep the interpretability of our
rules, we can not directly use unstructured data, e.g.,
MRI and PET images, for training. Instead, we need to
extract interpretable features from these unstructured
data, which could result in information loss compared
with end-to-end methods. Fourth, our study can not
accurately identify cognitively normal (CN) subjects
who progress to dementia since the sample size of CN-
to-Dementia subjects is small. Further data collections
are therefore warranted.
In conclusion, we propose a new framework that

adopts a Rule-based Representation Learner to learn
interpretable rules for the prediction and early diag-
nosis of dementia mainly based on cognitive tests. To
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make the rule sets learned by RRL more intuitive and
convenient to use for doctors, we propose a novel vi-
sualization form of RRL. To ensure the learned rules
are easy to promote and deploy, especially in low- and
middle-income countries, feature selection and rule set
selection are also carried out by doctors considering
the situation of different scenarios. The results on
ADNI and PUMCH verify that, even if only cognitive
tests are used, we can still obtain rule sets with high
performance and good interpretability for the predic-
tion and early diagnosis of dementia with the help of
doctors and RRL.

APPENDIX
Tables 3 and 4 list all the features used in the ADNI
and PUMCH data sets, respectively. The type of each
feature is decided by doctors in the feature selection
step.

Acknowledgements

Data collection and sharing for this project was funded by the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) (National Institutes of Health

Grant U01 AG024904) and DOD ADNI (Department of Defense award

number W81XWH-12-2-0012). ADNI is funded by the National Institute on

Aging, the National Institute of Biomedical Imaging and Bioengineering,

and through generous contributions from the following: AbbVie,

Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon

Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir,

Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and

Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated

company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen

Alzheimer Immunotherapy Research & Development, LLC.; Johnson &

Johnson Pharmaceutical Research & Development LLC.; Lumosity;

Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx

Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation;

Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company;

and Transition Therapeutics. The Canadian Institutes of Health Research is

providing funds to support ADNI clinical sites in Canada. Private sector

contributions are facilitated by the Foundation for the National Institutes of

Health (www.fnih.org). The grantee organization is the Northern California

Institute for Research and Education, and the study is coordinated by the

Alzheimer’s Therapeutic Research Institute at the University of Southern

California. ADNI data are disseminated by the Laboratory for Neuro

Imaging at the University of Southern California.

Funding

This work was supported in part by National Key Research and

Development Program of China under Grant No. 2020YFA0804503,

2020YFA0804501, National Natural Science Foundation of China under

Grant No. 61521002, and Beijing Academy of Artificial Intelligence (BAAI).

Abbreviations

MCI: Mild Cognitive Impairment; MCI-C: MCI converter; MCI-NC: MCI

nonconverter; AD: Alzheimer’s disease; CN: Cognitively Normal; AUC: Area

Under the Curve; ROC: Receiver Operating Characteristic; LMIC: Low- and

Middle-Income Countries; HIC: High Income Countries; MRI: Magnetic

Resonance Imaging; PET: Positron Emission Tomography; MMSE:

Mini-Mental State Exam; FAQ: Functional Assessment Questionnaire;

ADNI: Alzheimers Disease Neuroimaging Initiative; PUMCH: Peking Union

Medical College Hospital; RRL: Rule-based Representation Learner; LR:

Logistic Regression; PLNN: Piecewise Linear Neural Network; SVM:

Support Vector Machines; RF: Random Forest; XGBoost: eXtreme Gradient

Boosting; MLP: Multilayer Perceptron; LSTM: Long Short-Term Memory;

Availability of data and materials

The ADNI data that support the findings of this study are publicly available

in the LONI database (https://ida.loni.usc.edu). The PUMCH data that

support the findings of this study are available from the corresponding

author upon reasonable request.

Ethics approval and consent to participate

All subjects gave their informed consent for inclusion before they

participated in the study. The study was conducted in accordance with the

Declaration of Helsinki, and the protocol was approved by the Ethics

Committee of PUMCH (No. JS1836).

Competing interests

The authors report no competing interests.

Consent for publication

Not Applicable

Authors’ contributions

Z.W. and Jianyong Wang conceived the work. Z.W., Jie Wang, C.L., L.D.,

R.Z., C.M. and J.G. contributed to the data acquisition and resource

allocation. Z.W., N.L., X.L., R.Z., Z.D. and W.Z. contributed to the design

and development of the models, software and the experiments. Z.W., Jie

Wang, C.L., J.G. and Jianyong Wang interpreted, analysed and presented

the experimental results. Z.W., Jie Wang, N.L., X.L., R.Z., Z.D., W.Z.,

J.G. and Jianyong Wang contributed to drafting and revising the

manuscript. All authors read and approved the final manuscript and are

personally accountable for its content.

Author details
1Department of Computer Science and Technology, Tsinghua University,

Beijing, P.R. China. 2Department of Neurology, State Key Laboratory of

Complex Severe and Rare Diseases, Peking Union Medical College Hospital,

Chinese Academy of Medical Science/Peking Union Medical College,

Beijing, P.R. China. 3School of Computer Science and Technology, East

China Normal University, Shanghai, P.R. China.

References
1. World Health Organization: Dementia (2020). https:

//www.who.int/en/news-room/fact-sheets/detail/dementia

Accessed 21 Sep 2020

2. Organization, W.H., et al.: Risk reduction of cognitive decline and

dementia: Who guidelines (2019)

3. Patterson, C., et al.: World alzheimer report 2018: The state of the art

of dementia research: New frontiers (2018)

4. Nakamura, A.E., Opaleye, D., Tani, G., Ferri, C.P.: Dementia

underdiagnosis in brazil. The Lancet 385(9966), 418–419 (2015)

5. Jitapunkul, S., Chansirikanjana, S., Thamarpirat, J.: Undiagnosed

dementia and value of serial cognitive impairment screening in

developing countries: A population-based study. Geriatrics &

gerontology international 9(1), 47–53 (2009)

6. Dias, A., Patel, V.: Closing the treatment gap for dementia in india.

Indian journal of psychiatry 51(Suppl1), 93 (2009)

7. Olazarán, J., Reisberg, B., Clare, L., Cruz, I., Peña-Casanova, J.,

Del Ser, T., Woods, B., Beck, C., Auer, S., Lai, C., et al.:

Nonpharmacological therapies in alzheimer’s disease: a systematic

review of efficacy. Dementia and geriatric cognitive disorders 30(2),
161–178 (2010)

8. Prince, M., Bryce, R., Ferri, C.: World alzheimer report 2011: The

benefits of early diagnosis and intervention (2018)

9. Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S.,
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Table 3 All the features used in the ADNI dataset.

Type Feature Description

Demographics

AGE Age

PTGENDER Sex

PTEDUCAT Education

PTETHCAT Ethnicity

PTRACCAT Race

PTMARRY Marital

Easy-to-obtain
Cognitive Tests

MMSE Mini-Mental State Examination

RAVLT.immediate RAVLT Immediate (sum of 5 trials)

RAVLT.learning RAVLT Learning (trial 5 - trial 1)

RAVLT.forgetting RAVLT Forgetting (trial 5 - delayed)

RAVLT.perc.forgetting RAVLT Percent Forgetting

LDELTOTAL Logical Memory - Delayed Recall

DIGITSCOR Digit Symbol Substitution

TRABSCOR Trails B

FAQ Functional Assessment Questionnaire

MOCA Montreal Cognitive Assessment

mPACCdigit ADNI modified Preclinical Alzheimer’s Cognitive Composite (PACC) with Digit Symbol Substi-
tution

mPACCtrailsB ADNI modified Preclinical Alzheimer’s Cognitive Composite (PACC) with Trails B

Hard-to-obtain
Cognitive Tests

CDRSB Clinical Dementia Rating scale Sum of Boxes

ADAS11 Alzheimer’s Disease Assessment Scale (ADAS) 11

ADAS13 ADAS 13 (including Delayed Word Recall and Number Cancellation)

ADASQ4 ADAS Delayed Word Recall

EcogPtMem Pt ECog - Mem

EcogPtLang Pt ECog - Lang

EcogPtVisspat Pt ECog - Vis/Spat

EcogPtPlan Pt ECog - Plan

EcogPtOrgan Pt ECog - Organ

EcogPtDivatt Pt ECog - Div atten

EcogPtTotal Pt ECog - Total

EcogSPMem SP ECog - Mem

EcogSPLang SP ECog - Lang

EcogSPVisspat SP ECog - Vis/Spat

EcogSPPlan SP ECog - Plan

EcogSPOrgan SP ECog - Organ

EcogSPDivatt SP ECog - Div atten

EcogSPTotal SP ECog - Total
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